Structures of the Endocrine System
The endocrine system consists of cells, tissues, and organs that secrete hormones as a primary or secondary function. The endocrine gland is the major player in this system. The primary function of these ductless glands is to secrete their hormones directly into the surrounding fluid. The interstitial fluid and the blood vessels then transport the hormones throughout the body. The endocrine system includes the pituitary, thyroid, parathyroid, adrenal, and pineal glands . Some of these glands have both endocrine and non-endocrine functions. For example, the pancreas contains cells that function in digestion as well as cells that secrete the hormones insulin and glucagon, which regulate blood glucose levels. The hypothalamus, thymus, heart, kidneys, stomach, small intestine, liver, skin, female ovaries, and male testes are other organs that contain cells with endocrine function. Moreover, adipose tissue has long been known to produce hormones, and recent research has revealed that even bone tissue has endocrine functions.
The ductless endocrine glands are not to be confused with the body’s exocrine system, whose glands release their secretions through ducts. Examples of exocrine glands include the sebaceous and sweat glands of the skin. As just noted, the pancreas also has an exocrine function: most of its cells secrete pancreatic juice through the pancreatic and accessory ducts to the lumen of the small intestine.
Question 1 : Compare and contrast endocrine and exocrine glands.
Answer : Endocrine glands are ductless. They release their secretion into the surrounding fluid, from which it enters the bloodstream or lymph to travel to distant cells. Moreover, the secretions of endocrine glands are hormones. Exocrine glands release their secretions through a duct that delivers the secretion to the target location. Moreover, the secretions of exocrine glands are not hormones, but compounds that have an immediate physiologic function. For example, pancreatic juice contains enzymes that help digest food.
Question 2: Diffrenciate between endocrine system and nervos system.
answer:
|
Answer: The endocrine system uses chemical signals called hormones to convey information from one part of the body to a distant part of the body. Hormones are released from the endocrine cell into the extracellular environment, but then travel in the bloodstream to target tissues. This communication and response can take seconds to days. In contrast, neurons transmit electrical signals along their axons. At the axon terminal, the electrical signal prompts the release of a chemical signal called a neurotransmitter that carries the message across the synaptic cleft to elicit a response in the neighboring cell. This method of communication is nearly instantaneous, of very brief duration, and is highly specific.
Hormone
Endocrine Glands and Their Major Hormones (Table 2) | |||
---|---|---|---|
Endocrine gland | Associated hormones | Chemical class | Effect |
Pituitary (anterior) | Growth hormone (GH) | Protein | Promotes growth of body tissues |
Pituitary (anterior) | Prolactin (PRL) | Peptide | Promotes milk production |
Pituitary (anterior) | Thyroid-stimulating hormone (TSH) | Glycoprotein | Stimulates thyroid hormone release |
Pituitary (anterior) | Adrenocorticotropic hormone (ACTH) | Peptide | Stimulates hormone release by adrenal cortex |
Pituitary (anterior) | Follicle-stimulating hormone (FSH) | Glycoprotein | Stimulates gamete production |
Pituitary (anterior) | Luteinizing hormone (LH) | Glycoprotein | Stimulates androgen production by gonads |
Pituitary (posterior) | Antidiuretic hormone (ADH) | Peptide | Stimulates water reabsorption by kidneys |
Pituitary (posterior) | Oxytocin | Peptide | Stimulates uterine contractions during childbirth |
Thyroid | Thyroxine (T4), triiodothyronine (T3) | Amine | Stimulate basal metabolic rate |
Thyroid | Calcitonin | Peptide | Reduces blood Ca2+ levels |
Parathyroid | Parathyroid hormone (PTH) | Peptide | Increases blood Ca2+ levels |
Adrenal (cortex) | Aldosterone | Steroid | Increases blood Na+ levels |
Adrenal (cortex) | Cortisol, corticosterone, cortisone | Steroid | Increase blood glucose levels |
Adrenal (medulla) | Epinephrine, norepinephrine | Amine | Stimulate fight-or-flight response |
Pineal | Melatonin | Amine | Regulates sleep cycles |
Pancreas | Insulin | Protein | Reduces blood glucose levels |
Pancreas | Glucagon | Protein | Increases blood glucose levels |
Testes | Testosterone | Steroid | Stimulates development of male secondary sex characteristics and sperm production |
Ovaries | Estrogens and progesterone | Steroid | Stimulate development of female secondary sex characteristics and prepare the body for childbirth |
No comments:
Post a Comment